

Built-in Balancing Mechanism

Offers comfortable handling with no operational strain, enabling effortless single-handed operation.

Equal-arm Design

CMM-CM30

High-accuracy angle encoder,

primarily employed for high-precision

angular measurement, with accuracy

requirements within a few arcseconds.

The arm body achieves maximum extension, covering the full measurement range without blind spots-whether horizontally, vertically, or at complex spatial angles.

Zircon Probe

More suitable for on-site measurement, offering long-term durability and robust performance.

Continuous data acquisition with rapid response and zero latency, delivering stable and reliable connectivity to ensure seamless measurement without interruption.

Enables quick manual fitting and removal

Continuously monitors the operating environment, dynamically adapts to environmental conditions, ensuring the equipment consistently maintains optimal detection performance.

High-capacity dual batteries with hot-swap capability; exceptional endurance stemming from low-power design, enabling over 16 hours of continuous measurement.

ZIRCON BALL PROBES

The high-strength zircon probe, with its excellent hardness and wear resistance, can effectively resist scratches and collisions over long periods of time. Whether in frequent contact with metal workpiece surfaces or in complex environments, the probe maintains stable geometric accuracy and surface finish, significantly extending its service life and providing outstanding durability for high-precision measurement tasks.

WIFI TRANSMISSION

The device is equipped with a new generation of high-speed WIFI transmission module, using advanced wireless communication protocols.

With strong anti-jamming ability and low latency, the measurement data can be synchronized to the end device in real time in milliseconds, no matter it is a continuous and intensive point taking, or a complex space fast scanning, to ensure the measurement process is lag-free and delay-free.

DUAL HIGH PERFORMANCE BATTERIES

Dual super-energy battery configuration, a single piece of strong endurance, a combination of use can meet the needs of long-time operation.

Support hot-swappable design, no need to shut down the machine can quickly replace the battery, to ensure uninterrupted operation of the equipment, goodbye to power anxiety, field, workshop and other complex scenarios can also continue to work efficiently.

CONCEALED HANDLE

The upper part of the base is equipped with a handle, which can effectively protect the equipment from damage when lifting it; it features a retractable design to save installation space.

SPECIFICATION

STANDARD ACCURACY, BE SERIES, 6-AXIS Unit: mm Maximum permissible error Measuring range Code SPAT EUNI Psize PFORM LDIA CMM-BE15 1500 0.028 0.015 0.038 0.036 0.029 CMM-BE20 2000 0.030 0.040 0.018 0.035 0.041 CMM-BE25 2500 0.035 0.045 0.020 0.038 0.050 CMM-BE30 3000 0.055 0.065 0.028 0.045 0.080 CMM-BE35 3500 0.075 0.080 0.035 0.058 0.098 CMM-BE40 4000 0.090 0.100 0.044 0.068 0.116 CMM-BE45 4500 0.112 0.120 0.048 0.086 0.128

HIGH ACCURACY,	IIGH ACCURACY, CM SERIES, 6-AXIS Unit: mr					
Code	Measuring range	Maximum permissible error				
		SPAT	Euni	Psize	PFORM	LDIA
CMM-CM15	1500	0.018	0.025	0.009	0.016	0.026
CMM-CM20	2000	0.020	0.028	0.010	0.018	0.032
CMM-CM25	2500	0.023	0.030	0.012	0.022	0.038
CMM-CM30	3000	0.034	0.042	0.016	0.032	0.052
CMM-CM35	3500	0.043	0.056	0.020	0.038	0.066
CMM-CM40	4000	0.052	0.066	0.024	0.044	0.083
CMM-CM45	4500	0.061	0.089	0.038	0.078	0.108

HIGH ACCURACY, C	GH ACCURACY, CM SERIES, 7-AXIS Unit: mn					
Code	Measuring	Maximum permissible error				
Code	range	SPAT	Euni	Psize	Pform	LDIA
CMM-CM20S	2000	0.022	0.030	0.012	0.022	0.040
CMM-CM25S	2500	0.027	0.032	0.013	0.025	0.048
CMM-CM30S	3000	0.042	0.053	0.020	0.035	0.078
CMM-CM35S	3500	0.055	0.066	0.024	0.043	0.092
CMM-CM40S	4000	0.065	0.082	0.029	0.048	0.102
CMM-CM45S	4500	0.073	0.099	0.043	0.082	0.132

JLTRA HIGH ACCURACY, HP SERIES, 6-AXIS Unit: mm					
Measuring	Maximum permissible error				
range	SPAT	Euni	Psize	Pform	LDIA
1500	0.012	0.022	0.007	0.012	0.024
2000	0.016	0.024	0.008	0.015	0.030
2500	0.018	0.026	0.009	0.018	0.032
3000	0.026	0.038	0.012	0.025	0.045
3500	0.036	0.052	0.016	0.034	0.060
4000	0.045	0.063	0.020	0.038	0.077
4500	0.055	0.080	0.028	0.050	0.101
	Measuring range 1500 2000 2500 3000 3500 4000	Measuring range SPAT 1500 0.012 2000 0.016 2500 0.018 3000 0.026 3500 0.036 4000 0.045	Measuring range SPAT EUNI 1500 0.012 0.022 2000 0.016 0.024 2500 0.018 0.026 3000 0.026 0.038 3500 0.036 0.052 4000 0.045 0.063	Measuring range SPAT EUNI PSIZE 1500 0.012 0.022 0.007 2000 0.016 0.024 0.008 2500 0.018 0.026 0.009 3000 0.026 0.038 0.012 3500 0.036 0.052 0.016 4000 0.045 0.063 0.020	Measuring range SPAT Euni PSIZE PFORM 1500 0.012 0.022 0.007 0.012 2000 0.016 0.024 0.008 0.015 2500 0.018 0.026 0.009 0.018 3000 0.026 0.038 0.012 0.025 3500 0.036 0.052 0.016 0.034 4000 0.045 0.063 0.020 0.038

ULTRA HIGH ACCU	ILTRA HIGH ACCURACY, HP SERIES, 7-AXIS Unit: mm					
Code	Measuring	Maximum permissible error				
	range	SPAT	Euni	Psize	PFORM	LDIA
CMM-HP20S	2000	0.018	0.026	0.010	0.019	0.038
CMM-HP25S	2500	0.020	0.028	0.011	0.022	0.042
CMM-HP30S	3000	0.032	0.048	0.016	0.032	0.072
CMM-HP35S	3500	0.045	0.061	0.020	0.039	0.088
CMM-HP40S	4000	0.055	0.076	0.026	0.044	0.098
CMM-HP45S	4500	0.065	0.095	0.036	0.065	0.122

Single-point articulation test

Distance measurement error between two points

Sphere diameter obtained from performing the articulated location test (diameter of the spherical zone containing the centers of a sphere measured from multiple orientations)

Arm Hardware Specifications

3°C/5min
8h for one battery; 16h for two batteries
USB, WI-FI
5°C-45°C
0-95%, non-condensing
100-240VAC, 50/60Hz
8.8kg to 10.6kg

STANDARD DELIVERY

Main unit	1 pc
3mm zircon ball probe	1 pc
6mm zircon ball probe	1 pc
Calibration cone	1 pc
Lithium batteries	2 pcs
USB cable	1 pc
Power adapter	1 pc
Dust cover	1 pc

STANDARD ACCESSORIES

Calibration Cone

Calibration cone with standard base, primarily used for probe calibration tasks and single-point accuracy testing operations.

3mm zircon ball probe

6mm zircon ball probe

Zircon Ball Probes

The zircon probe of the arm is made of zircon ceramic material, characterized by high hardness, abrasion resistance and chemical stability; excellent measurement performance, high accuracy, high resolution measurements and good repeatability.

OPTIONAL ACCESSORIES

Laser Line Probe

Suitable for 7-axis measuring arm, arm scanning probes for non-contact measurement acquisition。

It has the advantages of noncontact, high efficiency and high accuracy, and is widely used in manufacturing, reverse engineering, and heritage conservation.

SYSTEM ACCURACY WITH LASER LINE PROBE

Code	CMM-CEM-SD	CMM-CEM-HD
CMM-CM20S	0.050mm	0.040mm
CMM-CM25S	0.055mm	0.045mm
CMM-CM30S	0.062mm	0.052mm
CMM-CM35S	0.076mm	0.065mm
CMM-CM40S	0.090mm	0.081mm
CMM-CM45S	0.139mm	0.131mm
CMM-HP20S	0.043mm	0.038mm
CMM-HP25S	0.048mm	0.042mm
CMM-HP30S	0.055mm	0.047mm
CMM-HP35S	0.068mm	0.060mm
CMM-HP40S	0.080mm	0.074mm
CMM-HP45S	0.125mm	0.120mm

LASER LINE PROBE SPECIFICATION

Code	CMM-CEM-SD	CMM-CEM-HD	
Accuracy	±28μm(2σ)	±15μm(2σ)	
Working distance	115mm		
Effective scan width	near field 80 mm, far field 150 mm		
Points per line	maximum 4000 points per line		
Scan rate	1200000 points per second		
Laser	class 2		
Weight	536g		

Magnetic Base

Attach firmly to flat metal surfaces with strong suction, even when mounted with measuring arm, to prevent loosening.

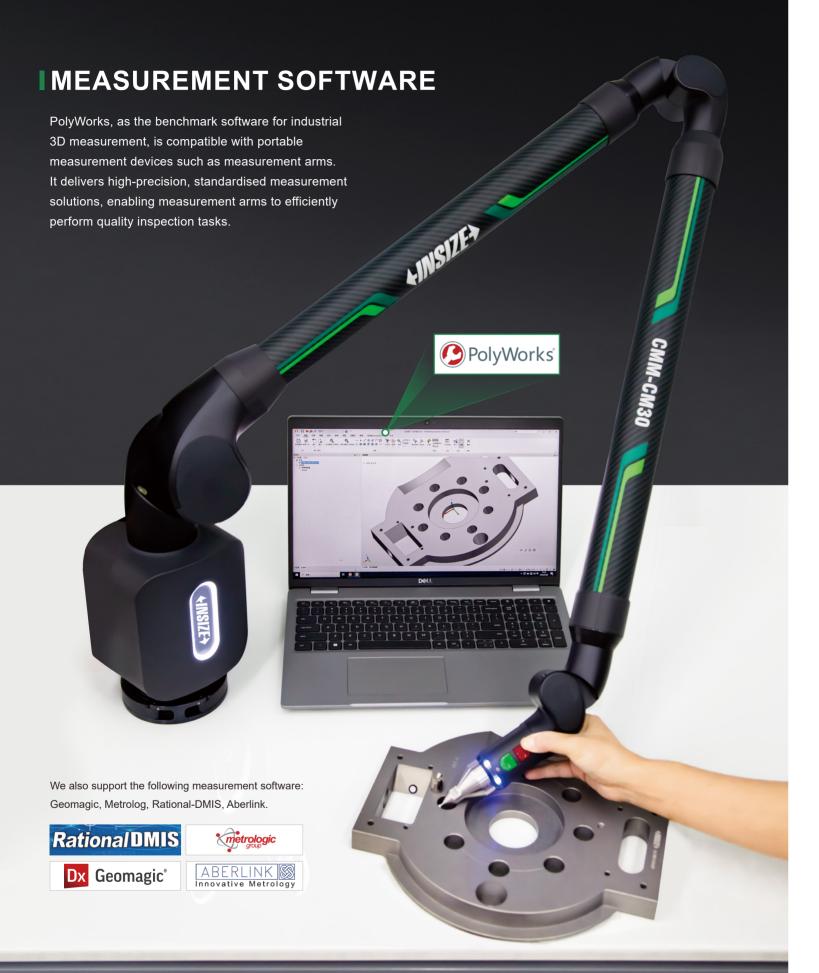
Performance parameters		
Calibre	150mm	
Height	76mm	
Weight	7.5kg	

Adjustable Tripod

It is foldable and easy to store and carry. Suitable for use in different locations.

Performance parameters			
Minimum height	730mm		
Total lifting height	1200mm		
Lifting height	470mm		
Moving force	300kg		
Work environment	-15°C-55°C		
Deadweight	18kg		

Electric Vacuum Base


Has a wide range of compatibility, can be seamlessly adapted to our different sizes and models of measuring arm, when the suction on the marble table, not only the operation is efficient and precise, but also ensure that the installation is solid.

Leapfrog cones

The Frog Jump Cone consists of three units, each equipped with a magnetic base, which serves as the core of the arm's frog jump operation and extends the reach of the arm to cover large workpieces with ease.

APPLICATION CASES

Online Detection

Measuring arm are well-suited for inspecting medium to large-sized, complex components. Offering high precision, flexibility, portability, and low environmental requirements, they enable rapid inspection completion and deliver reliable results for production.

Dimensional Analysis

The measurement data from the measuring arm not only meets customer specifications but also exceeds expectations, laying a solid foundation for quality in mass production and ensuring both manufacturing and product standards.

Incoming Material Inspection

Utilising measuring arm for incoming material inspection reduces tooling requirements, minimises processing time, and enhances precision, thereby providing efficient and reliable support for incoming material quality control.

Tooling Debugging

The measuring arm portable measuring device offers exceptional flexibility, enabling point-to-point contact measurements as required. It effortlessly handles multi-angle tasks, providing manufacturing with precise data support.

www.insize.com

- ****** +86-512-68099993
- sales@insize.com
- 80 Xiangyang Road, Suzhou New District, 215009 China